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Abstract

A novel numerical method for solving three-dimensional two phase flow problems is presented. This method combines a
quadrature free discontinuous Galerkin method for the level set equation with a pressure stabilized finite element method
for the Navier Stokes equations.

The main challenge in the computation of such flows is the accurate evaluation of surface tension forces. This involves
the computation of the curvature of the fluid interface. In the context of the discontinuous Galerkin method, we show that
the use of a curvature computed by means of a direct derivation of the level set function leads to inaccurate and oscillatory
results. A more robust, second-order, least squares computation of the curvature that filters out the high frequencies and
produces converged results is presented.

This whole numerical technology allows to simulate a wide range of flow regimes with large density ratios, to accurately
capture the shape of the deforming interface of the bubble and to maintain good mass conservation.
� 2007 Elsevier Inc. All rights reserved.
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1. Introduction

This paper is in the continuation of two other papers [1,2]. The first one [1] describes the high order Runge–
Kutta discontinuous Galerkin method to solve the level set equation. The second one [2] combines this level
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set method with a stabilized finite element method for the Navier Stokes equations in order to compute two
phase flows. In those articles, we show that, contrary to a popular belief, the poor mass conservation obtained
with the level set method is more inherent to the discretization method and to the need for reinitialization than
to the level set method itself. With the discontinuous Galerkin discretization of the level set equation, we show
that we are able to obtain excellent conservation properties. Furthermore, contrary to the common practice of
reinitializing the level set at each time step, we only need to reinitialize the level set a limited number of times.

The present paper’s concern is the accurate representation of surface tension effects that have to be taken
into account for computing bubble dynamics.

Bubble dynamics is frequently encountered in a variety of industrial processes. An accurate modeling of
bubbly flows is a challenging task due to (i) the fact that the interface separating the two fluids needs to be
tracked accurately without introducing excessive numerical smearing, (ii) the existence of a discontinuity in
material properties (density and viscosity) (density ratio is about 1–1000 for air bubbles in water), (iii) the need
to take into account a surface tension, that introduces a jump in the pressure field.

There are essentially two techniques for approximating the interface: front tracking and front capturing
methods. The main difference between the methods is that interface tracking methods are Lagrangian, i.e.
the mesh explicitly represents the interface, while interface capturing methods are Eulerian, i.e. the interface
is an implicit function defined on a fixed mesh.

Examples of interface tracking techniques are the arbitrary Eulerian Lagrangian (ALE) method [3,4], the
deformable-spatial-domain/stabilized space–time deformation (DSD/SST) [5], and methods that make use
of markers (for instance triangles) connected to a set of points to track the interface [6]. Those methods
are very accurate and very efficient for flexible moving boundaries with small deformations. However, they
are difficult to use when the topology of the interface changes (re-connections or disconnections). In addition,
significant re-meshing is needed when large deformations of the interface occur.

In interface capturing methods, an auxiliary function is needed to represent the interface. Those methods
are very robust and have a wide range of applicability. However, they usually require higher mesh resolution.
Examples of interface capturing methods are volume of fluid methods (VOF) [7,8] and level set methods [9,10].
Applications of level sets to multiphase flow calculations have been extensively described by Sussman et al. in
[11–13].

A common problem to all methods is the accurate representation of the surface tension force. This is of
great importance, since an inaccurate modeling of those forces may generate spurious currents that in turn
can contaminate the solution and create oscillations that may be strong enough to destroy the interface
[14]. The surface tension forces are evaluated according to the continuum surface force (CSF) method of
Brackbill et al. [15]:1
1 Th

where
FCSF ¼ rjnd�C; ð2Þ

where r is the surface tension coefficient, j is the curvature, n is the unit normal to the interface, and d�C is a
regularized Dirac delta function of the interface. The CSF has been used extensively over the last 14 years to
model surface tension in various Eulerian formulations, in particular in the VOF method [16] and the level set
method [17,18].

In the CSF-methodology, there are two ingredients for the accurate representation of surface tension
forces. The first is the idea that for interfaces in equilibrium, the pressure gradient must exactly balance the
surface tension force, and so result in a no-flow field [16]. This requires a proper discretization of the regular-
ized delta function d�C. Furthermore, the surface tension force is computed at the same location as the pressure
gradient is evaluated. In this way, at the discrete level, the pressure gradient discretization errors cancel out the
surface tension discretization errors, which largely reduces the spurious currents [14,19]. The second ingredient
is the accurate estimation of the interface curvature j.
e CSF method was initially developed in the context of the VOF methods and reads as:

FCSF ¼ rjrf ; ð1Þ

f is the volume fraction and goes smoothly from zero to one across the interface.
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In the case of VOF’s, the computation of the curvature is a difficult task because of the lack of regularity of
the volume fraction of liquid. To overcome this problem, some authors have developed geometric methods to
reconstruct the interface from the values of the VOF (color) function [16,20]. Those techniques are sophisti-
cated and computationally expensive in 3D. In the context of the level set method, normals and curvatures can
in principle be easily expressed in terms of the level set function:
Fig. 1.
magnifi
n ¼ r/
jr/j ; j ¼ �r � n:
Thus, in order to evaluate the curvature, second-order derivatives of / have to be computed. The fact that
the level set method provides continuous, differentiable representation of the geometrical properties has often
been recognized as an advantage of level set techniques compared with VOF techniques.

However, in this paper, we question this apparent easy differentiation of the geometric properties. This was
also pointed out by Cummins et al. in [21] where they showed that, contrary to a popular belief, a straight-
forward differentiation of the level does not always give accurate and converging results of the curvature esti-
mates. This is essentially due to high frequencies introduced in the level set function by the velocity field (that
is solution of the Navier–Stokes equation) and/or a reinitialization procedure. In order to compute those geo-
metric properties accurately either smoothing techniques or least squares approaches have to be used [17,21].

In our work, the level set function / is advected using an upwind high order discontinuous Galerkin (DG)
scheme in space. We show in [1] that this upwind DG discretization of the level set possesses spectral and spa-
tial super-convergence properties, showing super accuracy for the resolved numerical wave numbers. More-
over, the derivatives are L2 stable, i.e. producing curvatures that converge in the sense of L2. However, as
the level set is advected by the velocity field (that is solution of the Navier–Stokes equations discretized with
a P1/P1 stabilized finite element method), high frequencies aliasing errors are introduced in the level set func-
tion. This in particular does not yield accurate and converging estimates for the interface curvature anymore
and hence, prevents us from computing the derivatives with a direct derivation of the level set. It is important
to note that those high frequencies aliasing errors are independent of the choice of our spatial discretization
for the level set equation. Thus, a continuous finite-element discretization of the level set equation would suffer
from a similar lack of convergence.

Fig. 1 shows a bubble (represented by the iso-zero of the level set function). A zoom at the interface shows
the high frequencies contained in the solution. Those oscillating components will be magnified when derivates
are calculated. Authors [17] have proposed to regularize the level set function using the following diffusion
equation:
Z

Xe

/ŵdv ¼
Z

Xe

~/ŵdvþ
Z

Xe

�r~/rŵdv;
where ~/ is the filtered level set function and ŵ a test function and � is a diffusion parameter. The major draw-
back of this smoothing technique is its high computational cost, since it requires to solve a diffusion equation.

As far as we are concerned, we show that a least square computation of the curvature can be robust, second
order and enables to filter out the undesired high frequencies.

Our discontinuous Galerkin level set method has good conservation properties and exhibits very small mass
losses [1]. It is coupled with a stabilized finite element method for the solution of the incompressible fluids [2].
Iso-zero of the level set function (left) and zoom at the interface (right). The oscillating components in the level set function will be
ed when derivates are calculated leading to poor approximation of the curvature at the interface.
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The finite element approach enables us to integrate exactly the discontinuities of density and viscosity without
introducing any artificial parameter and the pressure stabilization [22,23] enables to use equal order interpo-
lations for velocity and pressure.

The proposed numerical method allows to simulate a wide range of flow regimes with large ratio of den-
sities and to accurately capture the shape of the deforming interface of the bubble, while maintaining a good
mass conservation.

The remainder of this paper is organized as follows. Section 2 is devoted to the mathematical formulation
of the continuous two phase problem. Then we introduce the CSF model. In Section 3, we present the discret-
ization methods that are used and in Section 4 we focus on the numerical approximation of the normal and the
curvature. Finally, in Section 5, we present results of simulations.
2. Mathematical formulation

For incompressible two-phase flows, the Navier Stokes equations can be combined into a single set of equa-
tions for the velocity u in the entire domain of interest taking into account surface tension through a local
volumetric surface tension force [24].

We consider that the interface is represented by the iso-zero of the level set function /. The level set func-
tion / is positive in the liquid (denoted fluid 1) and negative in the gas (denoted fluid 2).

The governing equations describing the motion are then given by the non-dimensional Navier Stokes equa-
tions and by the level set equation:
otuþ u � ru ¼ � rp
qð/Þ þ

1

qð/ÞRe
r � ðlð/ÞðruþruTÞÞ þ g

Fr2
þ jndC

qð/ÞWe
ð3Þ

r � u ¼ 0 ð4Þ
ot/þr � ðu/Þ ¼ 0: ð5Þ
This is the continuous problem that we use to model our two-phase flow problem. It is also used in
[11,17,24–26]. This formulation, after we regularize the delta function, is very similar to the one obtained
by Brackbill et al. [15], the Continuum Surface Force (CSF) method.

From the level set function one can derive the density q(/), viscosity l(/), the normal n and the curvature j.
Density and viscosity are written as
qð/Þ ¼ q2ð1� Hð/ÞÞ þ q1Hð/Þ; ð6Þ
lð/Þ ¼ l2ð1� Hð/ÞÞ þ l1Hð/Þ; ð7Þ
where H(/) is the Heaviside function that is equal to 1 in the liquid and 0 in the gas. The normal and curvature
are given by:
n ¼ r/
jr/j ; j ¼ �r � n: ð8Þ
Here u is the velocity field, p the pressure field, q and l are the density and dynamic viscosity of the fluid all in
non-dimensional forms; these are variables in whole domain but constant and in general different in each
phase. g denotes the gravitational field.

The key flow parameters are the ratio of densities and viscosities (q1=q2, l1=l2), the Reynolds number
Re ¼ qRU RLR=lR, the Froude number Fr ¼ UR=

ffiffiffiffiffiffiffiffi
gLR

p
and the Weber number We ¼ qRU 2

RLR=rR. r is the sur-
face tension coefficient and the subscript R denotes a reference value.
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This formulation 3, 4 implicitly contains the boundary conditions at the interface as found in standard
references:
Fig. 2.
(b) line
½u� ¼ 0; ½�pI þ lðruþruTÞ� � n ¼ rjn; ð9Þ

where the brackets denote the jump across the interface.

2.1. Modeling of surface tension

The surface tension effects enter into the momentum equations (3) as a source term. The surface tension
forces, i.e the last term in Eq. (3), are, according to the Continuum Surface Force (CSF) model [15], expressed
as:
FCSF ¼ jnd�C
qð/ÞWe

; ð10Þ
where d�C is the regularized delta function at the interface.
A important ingredient for the accurate representation of surface tension forces is that for interfaces in

equilibrium, the pressure gradient force must exactly balance the surface tension force, and so result in a
no-flow field. This requires a proper discretization of the regularized delta function d�C.

In this work, we use the following regularized delta function (hat function):
d�Cð/Þ ¼
0 k/k > �
1
2�
k/k 6 �

(
; ð11Þ
where / represents the signed distance to the interface and � is the interface thickness defined as 1.5h, and h is
the mesh spacing. The reason for this is the following. For interfaces in equilibrium, the pressure term should
balance exactly the surface tension term:
rph

qð/Þ ¼
jnd�C

qð/ÞWe
: ð12Þ
More specifically, the gradient of the pressure field should be equal (up to a constant) to the Dirac delta
function (Fig. 2). At the discrete level this is only the case if the pressure field is discontinuous (2(a)). Mean-
while, as we use linear P1 finite elements to represent the pressure field, the pressure jump created by the sur-
face tension will establish itself over a certain thickness and will vary linearly over this thickness (see Fig. 2(b)).
Hence, an appropriate choice of smoothened Delta function is the hat function given by Eq. (11) and illus-
trated at Fig. 2(b).

In the example of Fig. 3, we have placed a bubble of radius R = 1 at rest in a box [0, 2] · [0, 2]. The initial
conditions are zero velocity and pressure field. The two fluids have same density q1 = q2 = 1 and viscosity
l1 = l2 = 1. Due to the effect of surface tension (r = 10 J/m2) the pressure inside the bubble increases and
The pressure gradient should balance exactly the Dirac delta function. (a) Sharp pressure jump and exact Dirac delta function,
ar pressure jump and ‘‘hat’’ Dirac delta function.



Fig. 3. Instantaneous pressure field for a static bubble. Computations are performed using (a) an exact dCð/Þ and (b) smoothened d�Cð/Þ
delta function.
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should reach the equilibrium state: pin � pout ¼ r=R (Laplace law). The computational mesh is a non-regular
mesh of size h = 0.04. We compare the results obtained using a the exact delta function dC and the smoothened
delta function d�Cð/Þ. The computations with the exact delta function included the localization of the interface
and the computation of a surface integral. To achieve this, we used a recurse contouring algorithm described
in [27]. We clearly see that the use of an exact Dirac delta function leads to oscillatory results in the pressure
field while the use of a smoothened Dirac delta function gives a correct and smooth pressure jump.

2.2. Reinitialization of the level set

In the formulation described above, the interface will have a uniform thickness as long as / remains a dis-
tance function. However, within time the level set does not necessary remain a distance function. One solution
is to reshape the level set to a distance function. One of the major drawbacks of this method referred to as
reinitialization is the difficulty in not moving the original location of the interface. Several methods have been
developed, such as fast marching methods [10,28] and reinitializing techniques developed by Sussman et al.
[11] based on the resolution of a first-order partial differential equation.
Fig. 4. Contouring algorithm to accurately localize the interface. In black, the computational mesh. In grey, the 4 level refined elements. In
green, a set of points on the interface. (For interpretation of the references in colour in this figure legend, the reader is referred to the Web
version of this article.)
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In this paper we avoid the cost of the renormalisation procedure at each time step by computing a set of
points Ni on the level set and by computing the delta function defined in (11) as a function of:
/distðxÞ ¼ ðmin
i
ðdistðx;NiÞÞÞ: ð13Þ
The set of points is computed using a recursive contouring algorithm (described in [27]) with a fast search
tree method. The approach is quite simple. It consists of dividing the elements that are crossed by the interface
recursively into sub-elements and perform a linear approximation on every edge of those sub-elements to find
the points on the interface (points with a zero value of the level set). This recursive algorithm is of course only
mandatory if the level set is approximated by high order polynomials p > 1.

Fig. 4 shows an example of the recursive contouring algorithm of level 4 to localize the interface.
Those points Ni are then stored in a search tree (Approximate Nearest Neighbor (ANN) [29]). Next, using

the search tree, we compute the smallest distance (Eq. (13)).
Meanwhile, the complete reinitialization procedure is nonetheless applied 5–10 times over 500 time steps

during the simulation in order to maintain good conservation properties. The reason for this is that the level
set might become very flat at the vicinity of the interface and as a consequence, an accurate determination of
the interface is not possible anymore.

To the best knowledge of the authors, not performing a reinitialisation procedure at the end of each time
step is a novel approach in the context of the level set based methods [11,30,31].
3. Numerical framework

To derive the finite element discretization, we assume that we have some appropriate finite dimensional
function spaces for the trial ðSh

u;S
h
p;S

h
/Þ and weighting ðVh

u;V
h
p;V

h
/Þ function spaces corresponding to

the velocity, pressure and the level set function.
Concerning the function spaces, we use linear continuous approximations for the velocity and pressure and

piecewise continuous approximations of order p on each element for the level set. The physical domain X of
boundary C is discretized into a collection of Ne elements (Xe) called a mesh.

3.1. The Navier–Stokes solver

We use a pressure stabilized finite element (PSPG) [23,32] method for the discretization of the Navier
Stokes equations. For the stabilization of the upwind term, we follow the work of Barth [33] and use a finite
volume stabilization with the finites volumes being the median cells of the mesh.

The stabilized finite element formulation of Eqs. (3) and (4) can be written as follows: find uh 2Sh
u and

ph 2Sh
p such that 8vh 2Vh

u and 8qh 2Vh
p :
Z

Xe

vh � uh
t þ uh � ruh þrph

q
� jnd�C

qWe
� g

Fr2

� �
dvþ

Z
Xe

rvh � l
qRe
ðruþruTÞ þ ST ¼

Z
C

vh � hh ds; ð14Þ
where hh denotes the Neumann-type boundary condition associated with the momentum equations hh ¼ r � n
on the interface C, where r ¼ �pI þ lðruþruTÞ is the stress tensor.

The stabilization term ST
ST ¼
X

e

Z
Xe

serqhRðph; uhÞdv ð15Þ
contains the residual of the momentum equation
Rðph; uhÞ ¼ uh
t þ ðuh � rÞuh � 1

qRe
r � lðruþruTÞ þ rph

q
� g

Fr2
� jnd�

qWe
: ð16Þ
The stabilization parameter s� is of order Oðqh2
e=lÞ in the diffusion dominated case and of order of

Oðhe=kukÞ in the advection dominated case [23,34,35].
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For the numerical solution of (14), a second-order three-point backward difference scheme is employed for
the time-integration. An inexact Newton method based on a finite difference Newton–Krylov algorithm [36] is
used to solve at each time step the system of nonlinear equations. The iterative solution of the large sparse
linear system of equations that arises at each Newton iteration is solved by the GMRES method precondi-
tioned by the RAS [37] algorithm.

3.1.1. Discontinuous density and viscosity

As the density and the viscosity are constant in each phase but may be discontinuous across the interface
(the interface does not conform with the mesh), some integrals of Eq. (14) are discontinuous. Those discon-
tinuous integrals are computed exactly by numerical integration:
Z

Xe

vhrph

q
dv ¼

Z
V 1

vhrph

q1

dvþ
Z

V 2

vhrph

q2

dv; ð17ÞZ
Xe

rvh l
qRe
ruh dv ¼

Z
V 1

rvh l1

q1Re
ruh dvþ

Z
V 2

rvh l2

q2Re
ruh dv; ð18Þ
where the subscripts 1 and 2 denote the fluid 1 and the fluid 2. More details of implementation can be found in
[2].

3.1.2. Evaluation of the surface tension term
For the evaluation of the surface tension term in Eq. (14), a density scaling of the CSF, given by,
~FCSF ¼ qð/Þ
hqi FCSF; ð19Þ
where q(/) is the local density and hqi is an average density, was found to improve the CSF method’s ability to
model surface tension at high density ratio (>10) interfaces [15,38]. With this density scaling the CSF becomes
a true body force, where fluid acceleration is independent of its density. Eq. (19) can also be thought as a mod-
ification of dC since this density scaling will shift the CSF distribution away from the denser portion of the
interface transition region. However, it is not clearly stated in [15,38] which average density should be chosen.

We have observed that the following specific choice for the mean density Æqæ:
hqi ¼ 1

3
q1 þ

2

3
q2 ð20Þ
was producing convergent results for every combination of q1 and q2. We have therefore decided to investigate
more this issue.

To address this issue, we have implemented a simple MATLAB 1D code to solve the following 1D finite
element problem:
Z 1

�1

vh � rph

qð/Þ dr ¼
Z 1

�1

vh � jnd�C
hqiWe

dr; 8vh 2Vh
u ð21Þ

pð1Þ ¼ 0: ð22Þ
This simplified problem is solution of the Navier Stokes equations in the absence of gravity and for which the
curvature j is constant. In that special case, the surface tension force is canceled by a pressure gradient and the
fluid remains at rest. For a bubble of radius R, the solution to Eq. (21) is the Young–Laplace law (see Example
5.1 in Section 5): pin � pout ¼ r=R and this solutions is independent of the ratio of density of the two fluids. For
the 1D MATLAB problem, the bubble has a radius R = 1 and is centered at r = �1. The domain is X : x 2 [�1,1]
and the mesh is made of N = 13 equally spaced segments (h = 2/13). The surface tension coefficient is r = 1 and
the interface thickness is chosen to be � = 2.5h. We see in Fig. 5 that when the two fluids have the same density,
the pressure jump develops over a thickness of 2� and is centered at the interface. This is also the case when the
exact discontinuous density is considered for the evaluation of Eq. (21). Taking a mean value for the density in
Eq. (21) shifts the pressure jump towards the densest fluid. We also observe that the pressure jump starts at the
element next to the element containing the interface and that it develops only over a thickness of
2.5h � 0.5h = 2h. In that case, the best choice for Æqæ, i.e the one that gives the correct pressure jump is:



Fig. 5. Pressure jump for the 1D stationary bubble test case for different ratio’s of density and different values for the density in (21). The
interface is located at x = 0 and the interface is smoothed over a distance 2�, with � = 2.5h. The density q1 hold for x < 0 and the density q2

for x > 0.
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hqi ¼ 2h
5h

q1 þ
3h
5h

q2:
In our 3D problems, we have chosen an interface thickness of � = 1.5h. Following our 1D conclusions, the
mean density value Æqæ is the value given by Eq. (20).

3.1.3. Stability issues and time scale

As we use an implicit time integration method for the Navier Stokes equations, we avoid the standard con-
vective and diffusive stability restrictions:2
DtðconvÞ
num 6

h
klk ; and DtðdiffÞ

num 6
qh2

l
: ð23Þ
ose time step restrictions are highly restrictive in case one has to model the boundary layers (proportional to 1=
ffiffiffiffiffiffi
Re
p

) and in case one
mesh very complex geometries (very small mesh size h).
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However, our computational method has two stability constraints due to the explicit treatment of the gravity
and surface tension forces. Those constraints can be easily derived by the following empirical analysis [39]:

� the stability restriction due to the gravity can be expressed in the form of a CFL-like condition
ugDtðgÞnum

h 6 1;
where the corresponding gravity-induced velocity ug ¼ gDtðgÞnum. Then we obtain the maximal allowed time-
step size as :
DtðgÞnum �
ffiffiffiffiffiffiffiffi

h
kgk

s
; ð24Þ
� the stability restriction due to the capillarity can be expressed in the form of a CFL-like condition ucaDtðcaÞ
num

h 6 1;
where the corresponding capillary-induced velocity uca ¼ rjhdh

q DtðcaÞ
num � r

h2q
DtðcaÞ

num. Then we obtain the maxi-
mal allowed time-step size as [15]:
DtðcaÞ
num �

ffiffiffi
q
r

r
h3=2: ð25Þ
Finally, the global stability constraint is given by
DtNS 6 min DtðreÞ
phys; DtðgÞnum; DtðcaÞ

num

n o
: ð26Þ
3.2. The interface solver

We employ a quadrature free discontinuous Galerkin level set method [1] for the discretization of the level
set equation.

The discontinuous finite element formulation of Eq. (5) can be written as follows: find /h 2 Sh
/ such that

8ŵh 2Vh
/:
Z

Xe

ŵh � ot/dvþ
Z

Xe

rŵh � ðuh/Þdv�
Z

oXe

ŵh � f ds; ð27Þ
where f ¼ ð/u � nÞ is the normal trace of the fluxes and is chosen to be the upwind flux.
The resulting system is solved in time using an explicit Runge–Kutta method. The time step restriction is

given by:
DtDG 6
h

kukð2p þ 1Þ : ð28Þ
More details of implementation of the discontinuous Galerkin method as well as super-convergence anal-
ysis can be found in [1].

3.3. Coupling algorithm

The flow solver uses continuous linear approximations for the velocity ðvh ¼ N 1Þ while the interface DG
solver uses piecewise continuous high order p approximations for the level set / (ŵh ¼ Np):
u ¼
X4

i¼1

uiN 1
i and / ¼

Xnp

i¼1

/iN
p
i :
The reason why higher order polynomials are used for discretizing the level set is that Eq. (5) involves $/
and u. We choose a level set for which the gradient is at least in the space of the velocity (p = 2). In practice, we
have observed that p = 2 is a good compromise between accuracy (few mass loss) and computational cost [2].

Projection operators are used to project the velocity space to the level set space and conversely. The elemen-
tary projection operator P that projects the velocity variable from a polynomial space of order p = a to a space
of order p = b is given by:
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ub ¼ Pua ¼ M�bMabua; ð29Þ

where the mass matrix for the element Xe is given by:
Mab
ij ¼

Z
Xe

Na
i N b

j dv: ð30Þ
On the other side, we take the average of / at the nodes of the tetrahedron as /’s for the flow solver.
The overall algorithm is summarized here below (see Algorithm 1).

Algorithm 1. Coupling algorithm

At initial time t0

� Choose an appropriate time step Dt satisfying (26).
� Initialize the level set / at t = 0

For each time tn, n = 1,2, . . .
(1) Solve Eq. (14) in time t 2 ½t; t þ Dt� to find uhðt þ DtÞ and phðt þ DtÞ
(2) Project the velocity field onto the dofs of the level set (29)
(3) If n%100 ¼ 0, reinitialize the level set
(4) Solve Eq. (27) in time t 2 ½t; t þ Dt� using sub-time steps to find /hðt þ DtÞ
(5) Project the level set function onto the dofs of the velocity (average)
(6) Increment in time t ¼ t þ Dt and go back to step (2)
4. Numerical computation of normals and curvature

In this section, we present and compare two numerical methods to compute the normal n and the curvature
j at the interface (represented by the iso-zero of the level set function /). The level set being represented by
piecewise continuous polynomials of order p (DGM), the normal and curvature are given by:
n ¼ r/
jr/j ¼

~G

j~Gj
; j ¼ �r � n: ð31Þ
The first method computes those geometric properties in the context of the DGM, while the second
approach uses a least square procedure. An accurate computation of those geometric properties is essential
for the computation of the surface tension forces (Eq. (10)). We show that a high order DGM computation
of those terms leads to poor results while a least square method filters out the high frequencies and gives us
good results with a second-order accuracy.

4.1. The discontinuous Galerkin method

As the level set function / is represented by piecewise continuous polynomials of order p in the context of
the discontinuous Galerkin method, stable gradients of / should take into account solution jumps (disconti-
nuities of the level set). Second-order derivatives of / should also take into account gradient jumps. Despite
being L2-stable (i.e. producing curvatures that converge in the sense of L2), we will show that this procedure
leads to highly oscillatory curvature fields that cannot be used for computing surface tension forces.

The gradient ~G of the level set function / function is computed as:
Z
Xe

ð~G�r/Þŵdv ¼ 0 8ŵ ð32Þ
and by subsequently integrating this by part we get:
Z
Xe

~Gŵdv ¼ �
Z

Xe

/rŵdvþ
Z

oXe

/ŵnds; 8ŵ ð33Þ
where n is the unit normal to the boundaries of the element.
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Since the DGM allows discontinuities at the interface, / is not strictly defined on oXe, and we need to intro-
duce some choice here. We take the centered value [40]: /e ¼ 1

2
ð/e þ /e

rÞ where /e
r is the value of / on the

boundary oe as computed on the element Xer , the neighbor of Xe. Subsequently we compute the normal values
of the gradient for each degree of freedom i:
Fig. 6
(b) dis
ni ¼
~Giffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi

ðG2
x;i þ G2

y;i þ G2
z;iÞ

q : ð34Þ
The curvature defined as:
j ¼ �r � n

is then subsequently multiplied by a test function ŵ, integrated over the domain and integrated by parts:
Z

Xe

jŵdv ¼
Z

Xe

rŵ � ndv�
Z

oXe

n � nŵds 8ŵ: ð35Þ
We can show that for DG schemes with polynomials of order p and a mesh of mesh size h, the L2 norm of
the error is of order hpþ1. Therefore, we expect the normal to converge like hp and the curvature to converge
like hp�1.

4.2. The least squares method

The least squares approach has been proved to be optimal for linear and quadratic reconstructions in the
sense that, if the reconstruction function is not exactly a polynomial of degree p but one that has been per-
turbed by the addition of Gaussian noise, it minimizes the expected deviation from the unperturbed polyno-
mial in a certain rather natural norm [41].

For the evaluation of the nodal gradient ~G ¼ r/, a least squares procedure is used in which the data sur-
rounding each node is assumed to behave linearly or quadratically. We refer to Fig. 6 as a 2D example of the
linear and quadratic least squares approach. Considering a linear approximation, the data at the center of
gravity of each element surrounding the ith node may be expressed as:
/iðrÞ ¼ /i þ DrT �r/i; ð36Þ

where Dr ¼ r� ri and �r/i is a first-order approximation of the gradient. Considering a quadratic reconstruc-
tion at the center of gravity of each element will give us a second approximation of the gradient ��r/i and a
first-order approximation of the Hessian matrix �Hi:
/iðrÞ ¼ /i þ DrT ��r/i þ
1

2
DrT �HiDr: ð37Þ
By expressing the data in a similar way at each of the N elements of a chosen stencil, a N� 3 (N� 4 in
3D) system of equations can be solved to obtain a first (Eq. (38)) or second-order (Eq. (39)) approximation of
the gradient at node i:
1
2

3

4

5
i

1
2

3
4

5
i

. Stencil used for the reconstruction of the gradient at node i. (a) Distance-1 stencil for the linear reconstruction (left), and
tance-2 stencil for the quadratic reconstruction (right).
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In order to solve (38), at least 4 coefficients (N ¼ 4) are to be determined while for solving (39), the number
of coefficients raises to 10 (N ¼ 10). This implies that at least 4 (resp. 10) pieces of information have to be
provided to compute the required accurate derivatives for the linear (resp.quadratic) reconstruction at the
node i. Those pieces of information constitute the reconstruction stencil of the considered node. We take a
distance-1 neighbors stencil for the linear case (vertex-neighbors) and a distance-2 neighbors stencil for the
quadratic case (vertex-neighbors of vertices of vertex-neighbors). The distance-1 and distance-2 neighbors
stencil involve more information than necessary according to the above number of unknowns. The only excep-
tion is with the distance-1 neighbors for the nodes located at the boundaries of the domain.

The resulting over-determined system of linear equations Ax = b can then be solved in a least squares sense:
ATAx ¼ ATb: ð40Þ
10-6
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g 

L 2
 (

κ)

log h
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LS-QUAD reg.
LS-QUAD non-reg.

LS-LIN reg.
LS-LIN non-reg.

DG reg.
DG non-reg.

Convergence analysis of the curvature approximation j. Error E ¼ kj� jek� as a function of the mesh size h for the stationary
r bubble test case. We compare the three following methods on regular (reg.) and non-regular (non-reg.) grids: the discontinuous
in (DG) method, the least squares method using a linear reconstruction (LS-LIN) and the least squares method using a quadratic
truction (LS-QUAD).
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Subsequently, we compute the normal following (34) and compute the curvature by least squares in the
same way as described above.

4.3. Comparison

First we compare the accuracy of the curvature approximation with the two above presented methods. The
accuracy of the curvature computation is evaluated by computing the L2 error in curvature using subsequent
mesh refinements. We consider a disc of radius R = 1 placed at the center of a 4 · 4 square. The level set is
initially defined as the signed distance function / ¼

ffiffiffiffiffiffiffiffiffiffiffiffiffiffi
x2 þ y2

p
� 1. We define the following norm of the error

for the curvature:
Fig. 8.
metho
E ¼ kj� jek� ¼
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiZ

X
ðj� jeÞ2d�C dv;

s
ð41Þ
where je is the exact value of the curvature
je ¼
�1ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
ðx2 þ y2Þ

p :
x-Component of the normal (=nx) and curvature j at t = 0 s and t = 1 s. Computations are performed with two different numerical
ds: the discontinuous Galerkin (DG) method and the least squares (LS) approach (linear and quadratic reconstructions).
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and d�C is the smoothed delta function of Eq. (11) for which we have taken a constant thickness � = 0.5. For
this example, we have taken polynomials of order p = 4 to approximate the level set function. Fig. 7 shows the
L2 norm of the error in curvature as a function of the mesh size for regular and non-regular (denoted respec-
tively reg. and non-reg.) grids. We see that the curvature approximation is of order hp�1 ¼ h3 for the discon-
tinuous Galerkin (DG) method for regular and non-regular grids. As far as the least squares method is
concerned, the curvature approximation is of order h2 when using a quadratic reconstruction on regular
and non-regular grids and when using a linear reconstruction on regular grids but it does not converge using
a linear reconstruction on a non-regular grid!

Second we analyze normal and curvature fields when the level set evolves in time. We consider the test case
of an ellipsoidal-shaped bubble of size semi-axis a = 0.8, b = 0.35 with a surface tension coefficient r ¼ 0:1.
The bubble recovers a circular shape due to the surface tension. We use a regular mesh of size h = a/13.
Fig. 8 shows the x-component of the normal and the curvature fields computed with the DGM and the least
squares method (linear and quadratic reconstruction) at the initial time as well as at an intermediate time. We
clearly see that the DGM fails to predict an accurate curvature. This is due to the high frequencies contained
in the level set solution. On the other hand, the least squares method can be seen as a smoothing method that
filters out the high frequencies. We can also observe that the distance-1 stencil used for the linear reconstruc-
tion is not sufficient to compute the derivatives for the nodes located at the boundaries.

From the observations made in this section, we establish the following rule. If we use a regular grid, we will
compute the curvature by means of the least squares approach using a linear reconstruction (less computation-
ally expensive), while if we use a non-regular grid, we will compute the curvature by means of the least squares
approach using a quadratic reconstruction.

5. Numerical results and discussion

In this section, our numerical method is tested and applied to several 2D and 3D two-phase flows problems.
As we are only working with tetrahedral meshes, we use for the computation of the 2D flows a 2D mesh that is
extruded over a thin layer in the third dimension.

For those computations, we chose polynomials of order p = 2 to approximate the level set function. The
linear system arising from the linearisation of the discretized Navier Stokes equations is solved with a GMRES
update technique with a Krylov space of 50. The time step used for the implicit solution of the Navier Stokes
equations is chosen to be maximum 10 times the time step given by the CFL condition when solving explicitly
the level set equation. The level set is reinitialized for unsteady 3D computations every 100 time steps.

Our methods are implemented in standard C++, compiled with INTEL icc v8.0, and run on the NEC/Clus-
tervision Linux cluster installed at CENAERO.

5.1. Parasitic currents

The first test case is the verification of the stationary Laplace solution for a circular droplet. This test case
was suggested by Popinet and Zaleski in [19] and used later on by [14,16,42]. A circular bubble of one phase is
immersed into a fluid of another phase. In the absence of viscous, gravitational or external forces a stationary
solution exists (zero velocity field) and the Young–Laplace law should be verified exactly:
Dp ¼ r
R
ð2DÞ; Dp ¼ 2r

R
ð3DÞ; ð42Þ
where r is the surface tension coefficient and R the bubble radius. However, as shown in [14,16], subtle numer-
ical inaccuracies can generate parasitic currents in the vicinity of the interface. These unphysical velocities de-
pend strongly on many factors such as grid resolution, viscosity, surface tension, etc.

We placed a circular drop of diameter d = 2 in a square domain of size L = 4 with a non-regular grid of
mesh size h. We set the density and viscosity equal to 1 everywhere in the domain. The gravity is neglected;
the surface tension coefficient r will be varied, thus yielding different values of the Laplace number
La ¼ rqd=l2. The computations are measured after 250 characteristic time scales (tphys ¼ 250tscale

with tscale ¼ dl=r). It was conjectured by Lafaurie [43] that the amplitude of the spurious currents must be



Table 1
Independence of the capillary number Ca with respect to the Laplace number La (mesh size of h = L/32, L is the size of the domain)

La ¼ rqd=l2 12 120 1200 12,000

Ca ¼ Ur=l
Our method 8.51E�5 8.62E�5 8.59E�5 8.31E�5

Front tracking [19] 8.5E�6 6.76E�6 5.71E�6 5.99E�6

VOF [44] 2.18E�6 2.18E�6 2.18E�6 2.22E�6

Table 2
Convergence of the capillary number Ca with spatial resolution (the Laplace number is La ¼ 200, L is the size of the domain)

h Ca ¼ Ur=l

L/30 1.29E�4

L/60 6.43E�5

L/120 3.18E�5

L/240 1.12E�6
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proportional to r/l, which is equivalent to having an approximately constant value of the capillary number
Ca ¼ Ul=r. Table 1 illustrates the constant character of Ca over a broad range of Laplace numbers. A mesh
size of h = L/32 was used for those computations and compares the results with results from Popinet et al. [19]
and Shin et al. [14,44]. Table 2 shows that our method exhibits a first-order convergence. This series of con-
vergence tests were performed for a value of the Laplace number of La ¼ 100 and with an increasing spatial
resolution.

Yet, parasitic currents generated by our method are quite small in magnitude and do not degrade the solu-
tion when the surface tension coefficient is high.

5.2. Capillary pressure

At non-zero surface tension and zero gravity, any fluid particle whose shape deviates from circular (spher-
ical in 3D) should recover the circular (spherical) status and stable shape. When the drop has reached its final
state, the velocity field must vanish and the pressure drop at the interface must satisfy the Young–Laplace law
(Eq. (42)).

A two-dimensional and three-dimensional test case are presented. The fluid properties outside and inside
the bubble are q1 ¼ q2 ¼ 1; l1 ¼ l2 ¼ 0:1; g ¼ 0. With r = 0.1, which is considered to be a large surface ten-
sion coefficient, the flow quickly reaches the equilibrium state. The chosen time step is Dt = 0.05 s.

First, a square of length a ¼
ffiffiffi
p
p

=4 whose area is equivalent to the area of a circle of radius R = 1/4 is placed
at the center of a unit square discretized with a 60 · 60 · 1 grid.

As shown in Fig. 9(d), the square restores a circular shape within 20 time steps and the final pressure drop is
Dp ¼ 0:4001. One of the instantaneous velocity and pressure fields are also shown in Fig. 9 as well as the equi-
librium pressure field. The Young–Laplace law (42) is thus satisfied up to a relative error of 0.025% and the
mass loss is less than 0.1% at the 100th time step (Fig. 9).

Second, an ellipsoid defined by semi-axes of length a = 0.42, b = 0.2, and c = 0.2 is initially placed in a
cubic cavity discretized with a 25 · 25 · 25 grid. The volume of this ellipsoid is equivalent to the volume of
a sphere of radius 0.2561. The observed pressure drop Dp = 0.792 verifies the Young–Laplace’s relation
Dp ¼ 2r=R ¼ 0:7808 up to a relative error of 1.1%. Fig. 10 shows the initial ellipsoidal shape and the final
spherical shape of the bubble.

5.3. Bubble rise

In this test case, we consider the rise of a single bubble (initially at rest) due to the effects of buoyancy.
The problem of the rise of buoyant bubbles is often characterized in the literature by the Morton number,

the Eotvos number and the Reynolds number:



Fig. 10. Relaxation of an initial ellipsoidal bubble in a viscous fluid: (a) initial shape, (b) equilibrium shape.

Fig. 9. Relaxation of an initial square bubble in a viscous fluid: (a) pressure at t = 0.05 s, (b) pressure at t = 1 s, (c) velocity at t = 0.05 s,
(d) front evolution.
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Mo ¼ gl4
1

q1r3
; Eo ¼ Dqgd2

r
; Re ¼ q1U1d

l
: ð43Þ
Here q1 and l1 denote the viscosity and the density of the outer fluid and U1 is the terminal rise velocity of the
bubble. The Mo and Eo number are related to the Reynolds and the Weber number

Re ¼ Eo3

Mo

� �1=4

; We ¼ Eo
� �

if one choose the reference velocity to be equal to U R ¼ U1 ¼
ffiffiffiffiffiffi
gd
p

, the reference

length to be the bubble diameter LR ¼ d and if Dq ¼ q1 (this is true for air bubbles in water).

Our problem can then characterized by four dimensionless parameters: the density ratio q1=q2, the viscosity
ratio l1=l2, either the Eotvos and Morton numbers or the Reynolds and Weber numbers.



Fig. 11. Bubble diagram of Grace reproduced from [46]: shape regimes for bubbles and drops. The simulated cases are indicated with
capitals.

Fig. 12. Single bubble rise: computed bubble shape for the bubble regimes indicated in Table 3 and Fig. 11. The physical parameters are:
q1=q2 ¼ 100 and l1=l2 ¼ 100. (a) Spherical (Eo = 1, M = 10), (b) ellipsoidal (Eo = 10, Mo = 0.1), (c) skirted (Eo = 100, Mo = 1),
(d) dimpled (Eo = 100, Mo = 1000).
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For the simulations of single bubbles, a fixed density and viscosity ratio of one thousand was chosen. This
density and viscosity ratio mimics gas–liquid systems with sufficient accuracy and is a much higher ratio than
the one used in [45]. Prior to computation, a couple of simulation were carried out to assess that the size of the
computational domain was sufficiently large to mimic the conditions of an infinite quiescent liquid. It was
observed that the bubble shape was not affected anymore if the dimensions of the box in the horizontal direc-
tions exceeded 3–4 times the bubble diameter. All the walls of the domain are considered as free slip boundary
conditions.

We will compare the computed terminal Reynolds number and shapes of the bubble with data taken from
the Bubble diagram of Grace [46] (1973) (Fig. 11). Grace has analyzed a large body of experimental data on
shapes in quiescent viscous liquids and has shown that this data can be condensed into one diagram, using the
non-dimensional Re, Eo, and Mo numbers.

The bubble has a radius R equal to 0.5 and is placed inside a 3 · 3 · 6 box. The box is resolved by a fairly
coarse 30 · 30 · 60 mesh made of tetrahedra. The simulations results for four different regimes given in the
bubble diagram of Grace are presented at Fig. 12. In the first case 12(a), for a low Eo number, the bubble
remains almost spherical and rises with a constant velocity. In the second case 12(b), the bubble deforms
slightly to an ellipsoidal shape and then rises with constant velocity (see Fig. 13). In the third case 12(c),
for higher Eo, the bubble deforms to a skirted shape and then rises with constant velocity and shape and
finally in the last case 12(d), the bubble has a dimpled ellipsoidal shape.

In Table 3, we observe that despite the coarse mesh, the mass loss is smaller than 0.04% in all of these
simulations.

Fig. 14 plots the behavior of the velocity and pressure field for two different bubble regimes. Fig. 14(a) is a
velocity vector plot through a vertical center plane for the skirted bubble at Fig. 12(c). Fig. 14(b) shows the
pressure profile through a vertical center plane for the ellipsoidal bubble 12(b). As expected the pressure field is
Fig. 13. Single bubble rise with a steady ellipsoidal shape Eo ¼ 10; Mo ¼ 0:1. Bubble shape at non-dimensional times. The time is non-
dimensionalized with the reference velocity UR ¼

ffiffiffiffiffiffi
gd
p

and the reference length LR = d.

Table 3
Simulation of bubble rise in four different regimes

Bubble regime Case in Fig. 12 Eo Mo Ree Rec Mass loss (%)

Spherical A 1 10 0.2 0.34 0.004
Ellipsoidal B 10 0.1 4.6 4.25 0.005
Skirted C 100 1 20 22.25 0.04
Dimpled D 100 1000 1.5 1.9 0.005

Comparison of the experimental Reynolds number (Ree) obtained from the Grace diagram 12 with the computed Reynolds number (Rec)
and mass loss computations.



Fig. 14. Velocity and pressure profile through the vertical center plane for two different bubble regimes: (a) dimpled bubble: velocity field,
(b) spherical bubble: pressure field.
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dominantly hydrostatic while near the bubble, hydrodynamic, and surface tension forces come into play. The
bubble jump across the bubble surface due to surface tension is clearly seen.

5.4. Convergence study

We now study the shape convergence of the bubbles computed with our numerical method. We consider the
rise of a single 2D bubble and study the shape convergence at the non-dimensional time t* = 1. The time is
non-dimensionalized with the reference velocity UR ¼

ffiffiffiffiffiffi
gd
p

and the reference length LR = d.
The non-dimensional parameters for this test case are: Eo ¼ 100, Mo ¼ 0:001, q1=q2 ¼ 1000 and

l1=l2 ¼ 100. We consider three different grids with resolution 15 · 30, 30 · 60 and 60 · 120 corresponding
respectively to a mesh size of h = 1/15, 1/30, 1/60.

Fig. 15 illustrates the shape convergence at non-dimensional time t* = 1.
Fig. 15. Rising bubble. Convergence of the bubble shape with a grid refinement at non-dimensional time t* = 1. Eo ¼ 100, Mo ¼ 0:001,
q1=q2 ¼ 1000 and l1=l2 ¼ 100. The background grid is the coarser grid h = 1/15. The bubble shape is plotted for the three different grids
(green h = 1/15, blue h = 1/30, red h = 1/60). (For interpretation of the references in colour in this figure legend, the reader is referred to
the Web version of this article.)



Fig. 16. Merger of two rising bubbles towards a free surface. Fr ¼ 1, Re ¼ 10; We ¼ 10, q1=q2 ¼ 100 and l1=l2 ¼ 2. Position of the
bubbles and velocity fields at different non-dimensional times.

P1 elements P2 elements

Fig. 17. The exact time of merging depend on the numerical diffusion.
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This example demonstrates the convergence of the proposed scheme under mesh refinement and we note
that the convergence is achieved on fairly refined grids.

5.5. Bubble merging

We study the rise of two buoyant bubbles in two and three-dimensions. The dynamics of the bubbles
depends mainly on the initial distance between them and on the magnitude of the surface tension (Fig. 16).

We first consider a rectangular domain [�1.5,1.5] · [0,6] with two circular bubbles inside and a free surface
above those (see Fig. 16). The center of the first bubble is (0,1) and its radius is equal to R = 0.4, the center of
the second bubble is (0, 2) and its radius is R = 0.5. Thus the bubbles have a common axis of symmetry and the
initial distance between them equals 1/5 of the largest bubble. The density and viscosity ratio are respectively:
q1=q2 ¼ 100 and l1=l2 ¼ 2 and the Reynolds and Weber number are respectively Re ¼ 10, We ¼ 10. The
Fig. 18. Transient solution of bubble coalescence when the bubbles are not aligned. Fr ¼ 1, Re ¼ 18:8, We ¼ 50, q1=q2 ¼ 26, l1=l2 ¼ 20.
From left to right the non-dimensional time is t* = 0, t = 0.5, t = 1, t = 1.5, t = 2.

Fig. 19. Transient solution of bubble coalescence when the bubbles are not aligned. Fr ¼ 1, Eo ¼ 16, Mo ¼ 0:0002, q1=q2 ¼ 100,
l1=l2 ¼ 100. Bubble shapes at non-dimensional times.
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non-dimensional time step is Dt ¼ 0:01, which is about 200 times the one used by Tornberg et al. [17] for the
same simulation.

Fig. 16 illustrates the merger process. The small bubble travels in the wake of the upper larger bubble and
rises faster than that. When the small bubble reaches the larger bubble, the two bubbles merge. In the process,
two opposite vortices are created in the wake of the larger bubble. The merged bubble gets more deformed as
it gets closer to the surface and it pushes the surface upwards. Finally the filament between the two interfaces
gets so thin that the bubble merges with the surface. Subsequently, the two fluid filaments will be smoothened
out by local high velocities. Finally we reach a steady state where the two fluids are at rest and separated by a
flat surface.

The exact time at which merging will occur in a simulation for a fixed set of physical parameters is however
affected by the resolution, and by the amount of diffusion present in the calculations. This amount of numer-
ical dissipation depends upon the order of polynomials p chosen to represent the level set:
Fig. 20
l1=l2 ¼
Ediss ¼ OðhkÞ2pþ2
; ð44Þ
where h is the mesh size and k is the dimensionless wave number.
Fig. 17 shows at a fixed non-dimensional time t = 0.1 that the bubbles have merged or not according to the

use of polynomials of order p = 1 or p = 2 for the level set.
This is however a process converging as the resolution is increased and the numerical diffusion is decreased.
The second computation involves the oblique coalescence of two gas bubbles in an initially quiet liquid

where the bubbles are initially spherical with their centers not aligned on a vertical line. The computational
. Experimental photographs by Brereton [50] of the oblique coalescence of bubbles. Fr ¼ 1, Eo ¼ 16, Mo ¼ 0:0002, q1=q2 ¼ 100,
100. The non-dimensional time between subsequent photographs is t* = 1.2.
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domain is a [0,4] · [0, 4] · [0, 8] box and the two bubbles of radius R = 0.5 are located respectively at (2,2,2.15)
and (2.5,2,1). We set Re ¼ 18:8, We ¼ 50; q1=q2 ¼ 26, l1=l2 ¼ 20. The computational mesh is a 30 · 30 · 60
grid made of tetrahedra.

In Fig. 18, the computed evolution of the bubble shape is shown. The bubbles first become cap-like shaped.
Then the lower bubble experiences considerable deformation when it enters the wake region of the upper bub-
ble and they finally merge together because the vortex flow created by the upper bubble accelerates the rising
speed of the lower bubble.

Our results compare well with those of Sussman et al. (see [47, p. 330]) that use a much finer refined grid
(64 · 64 · 128 grid). They also compare well with those of Sousa et al. [48] and the experimental results
obtained by Narayanan [49].

For the last simulation, we take the same non-dimensional parameters as those used by [45]: Eo ¼ 16,
Mo ¼ 0:0002 (Re ¼ 67, We ¼ 16), q1=q2 ¼ 100, l1=l2 ¼ 100. We compare the computed evolution of the bub-
ble shapes with experimental photographs of the observed bubble shapes just before and after the coalescence
process [50].

In Figs. 19 and 20, the evolution of the bubble shape is shown together with photographs of the experimen-
tally observed bubble shapes just before and after the coalescence process. Again, we observe that in the begin-
ning the leading bubble behaves like an isolated bubble and that the trailing bubble catches up with the leading
bubble and experiences great shape deformation. The shape of the bubbles are in good agreement with the
experimental observations of [50] reproduced in Fig. 20 and with the numerical computations of [45,51].

6. Conclusion

In this paper, we have presented a novel numerical method for the simulation of three-dimensional bubble
flow problems. The method that has been described extensively in [1,2] combines a quadrature free discontin-
uous Galerkin method (DGM) for the level set equation with a pressure stabilized finite element method for
the Navier Stokes equations. Two main characteristics of our method are:

� fully implicit solution of the Navier Stokes Solver (use of larger time steps);
� high order DGM (usually order p = 2) that exhibits very small mass losses, even on fairly coarse grids.

The scope of this paper was the accurate representation of surface tension effects that have to be taken into
account when computing bubble dynamics.

In the context of the DGM, we have compared two different numerical methods to compute the curvature.
We showed that the use of a curvature computed by means of a direct derivation of the level set function leads
to inaccurate and oscillatory results, while a least-squares computation of the curvature filters out the high
frequencies, exhibits a quadratic convergence and is more robust.

A number of numerical simulations were used to verify the accuracy of the surface tension approximation
method (continuum surface force model). The simulation of a static bubble showed good agreement with the
analytical solution indicating that the curvature calculation procedure is accurate. Subsequently, the shapes of
single gas bubbles rising in quiescent liquids were compared with data taken from the bubble diagram of
Grace. The model was also successfully applied in the case where the interface experiences substantial changes,
i.e. co-axial and oblique coalescence of gas bubbles rising in a viscous liquid.
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